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1. Introduction

Suppose X,...,X n are independent observations from a density f with

support contained in [0,%). We consider estimating f(x) by a quantity

having the rational form

k i
f~)u(jo + 2 1 pi cosjx),11-aeix2 11

where 1.1(1 and the is's are explicit functions of Xi.*.Xn . An

estimator as In (1.1) bears an obvious resemblance to autoregressive moving

average (or ARNA) spectra, and will thus be referred to as an ARM

estimator.

Apparently, ARNVA type probability density estimators have not

previously been considered in the statistical literature. Parzen (1979)

and Carmichael (1984) have, however, proposed autoregressive (or AR) type

estimators of the form

;(Kp) - -;eX-...- eipxe1- 2.

Carmichael (1984) obtains a consistency result for f(-;p) by allowing the

AR order, p, to tend to infinity at a certain rate with the sample size,

n. In the current paper, the AR order is fixed at 1 and the MA order tends

to infinity with n. The motivation for the latter scheme is based on the

nimerical analytic device known as the el-transform, which in turn is

related to the notion of a generalized jackknife.

, , ,. - . 4 .,: . . .*; * . * es. S...':''., :, '""' ' * "6" 0 ; # 'S *W" -. V" "



Hart and Gray (1985) studied the use of ARM4A representations in

approximating (rather than estimating) density functions. Their results

characterize the Integrated squared bias of (1.1) in a number of different

situations. The current paper greatly generalizes the results of Hart and

Gray and also considers the mean integrated squared error (MISE) of (1.1).

It is shown that there exist quite general conditions under which an

estimator of the form (1.1) has asymptotically smaller MISE than does any

window-type Fourier series estimator. For example, this optimality

property obtains when f'(O+)*O, f'(%-)-O, and f" is square integrable.

More generally, we obtain results on the behavior of (1.1)'s MISE when the

Fourier coefficients of f are either approximately exponential or regularly

varying at infinity.

The paper will be ordered in the following way. In Section 2, the

estimator to be studied is defined, and a number of motivations for its

use are given. Section 3 contains some basic results concerning the MISE

of the ARMA estimator. The asymptotic MISE of the estimator is studied in

Sections 4 and 5 under the aforementioned conditions on the Fourier

coefficients of f. In Section 6 it is shown that when f is smooth (in a

well-defined sense) at one endpoint of its support but not at the other,

then the ARMA estimator is asymptotically superior to traditional

window-type estimators. Cross-validated smoothing of ARM4A estimates is

addressed in Section 7. and some summary remarks are given in Section 8.

a
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2. The Proposed Estimator

Let XI,*...Xn be a random sample from a density f with support

contained in [O,x]. We shall assume that f has the Fourier series

f(x) - %-1 (1 2jj 1 jcosjx). 0 < x < it (2.1)

where 4 Pf, cosJx f(x)dx. Cencov (1962), Kronmal and Tarter (1968),

Hall (1983) and others have investigated density estimators of the form

in(x;m) 11-12(1 12 *j cosJx). 0< x <.

where

1n1 "~ "" cOsJXk"

The estimators to be studied here are

fn(x;m~g) -fn(x;m) + (2/-x) Real Wepi*Ix (2.2)1 exp(tx)

where -1 < a < 1. The pair (i,.a) is the moothing parameter of the

estimator and can be chosen from the data by cross-validation. We will

return to this point in Section 7.

Before further discussion of the proposed estimator, we should justify

using the cosine basis as opposed to a basis with both cosine and sine

functions. This study was in part motivated by the problem of estimating

animal abundance using the line transect method (see Gates and Smith 1980

_ -- % %. , H- iJ KI*'~
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and Crain, Burnham, Anderson, and Laake 1979). The density function

estimated in this setting is typically assumed to be monotone decreasing on

(O,%). Since f(O)*f(x), the periodic extension of f is discontinuous at 0

and %, and hence a cosine-sine Fourier series estimator will perform poorly

near these two points. As shown by Hall (1983), though, the cosine series

estimator is not adversely affected by the condition f(O) * f(X). In

kernel estimation, the analogous means of correcting boundary problems is

the symmetrization device studied by Schuster (1985).

There are a number of ways of characterizing the estimators f n(-;ma).

First, it is clear that they may be written

1 ijx/ ix 1 2 < x < (2.3)

f nxa ) a I* 1c

where 0. -= and the 0i s depend only on a and the *j s. Aside from the

issue of positivity, (2.3) has the form of an ARMA(1,m+1) spectrum, hence

the name ARMA probability density estimator. The form (2.3) suggests that

f n(.;m,a) is well suited for densities with large "power" at either 0 or u

(but not both). While this is so, it will be seen in Section 6 that such

an observation somewhat understates the value of ARMA estimators.

Perhaps a more interesting way of characterizing fn(.,m,a) is in terms

of the generalized jackknife and the numerical analytic device known as the

e1-transform. Using (2.2), it is easy to show that, for m > 1,

(x;m ,a) I 2 Real(m )1 ae Fx (2.4)
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k
where Fk(X) - ijx k-l,2,..., and F0  0. The quantity

ix
Gm,,(x) - (Fm(x) -aeix Fl(x))/(1 -ae x) is a generalized jackknife

estimator (as defined by Schucany, Gray, and Owen 1971) of the functionJ.1 J
The problem of choosing a in such a way that G ,,(x) has smaller bias than

Fm(x) will be addressed later.

Defining Fk(x) * E(Fk(x)), we have

E(G ,.(x)) (F,(x) -aetXF,_,(X))/(l - exix).

If a is taken to be *m+1/#m , then (E(G ,,(x)):m=1,2,...) is the e1-

transform of the sequence {F.(x)). This transform, which dates at least to

Aitken (1926), is a numerical analytic tool used for accelerating the

convergence of a sequence to its limit. The work of Shanks (1955) gives a

thorough account of el and the more general en-transform. The interesting

and enlightening paper of H. L. Gray (1985) demonstrates the close

connection between many numerical analytic methods (including the en-

transform) and the statistical notion of Jackknifing to reduce bias. For

more uses of the en-transform in statistical problems, see Gray, Watkins,

and Adams (1972) and Morton and Gray (1984).

Also of interest is the Fourier series of fn(.;m,a). From (2.2),

fn(x ; m a) "  (x;m) + (2/%) = ; im cosix .

n na jam+, Om a .. . . .



The Fourier coefficients, j(ma), of the ARMA estimator are thus

.jmaj.*O,1l....,

;m J m  M+99;a~1 , a mi*,...

This shows that fn(x;m,a) will tend to have smaller bias than fn(x;m) when

the 0 decay geometrically. As will be seen, though, geometrically

decaying * 's are but a subset of the cases in which fn (.;m,a) affords a

bias reduction. Hart and Gray (1985) argue that ARMA type approximators

are very generally an effective means of counteracting the leakage effect

inherent in fn(.;m).

3. Mean Integrated Squared Error of fn(.;ma)

Define the mean integrated squared error of the estimator f by

J(f,f) - E f (f^(x)-f(x)) 2dx. The MISE will be used as a basis for

comparing fn(;m,a) with fn (;m) and more general Fourier series

estimators.

It is straightforward to show that

n I Mn arcsX 2 2 -1
J(f (.;ma),f) - (2/%) [n" Ivar(coSjXi) + a (1-a2) var(cosmXl)/n ]

+ (2/). l (sj-*mijm) 2  (3,1)

where var(cosjX1) )(1+€2/ 2  - . The first of the two terms in (3.1)

is the integrated variance of fn(-;m,a) while the latter is the integrated

squared bias. Note that taking a-O in (3.1) yields J(in(;m),f). This is
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important since it makes clear that one may always choose a so that the
MISE of an ARMA estimator is no bigger than that of fn(.;m).

If {%,n:m,n - 1,2,...) is a sequence satisfying lam nl<l and

lim inf )>O, then as nm+-

m~n
i(fn(';m•am,n)Af) - (2/i)[n'l Y var(cosjX1) + - ($J m) 2 ]

n~in mj ' ~m+j .] m m,n

+ O(n- ). (3.2)

In this event, then, the effect of amn on the variance of the ARMA

estimator is asymptotically negligible as n and m'-. It will be seen,

though, that there are also cases where a good choice of amn is such that

m(1-2 ,)+c as m,n+-. In such cases the term 2 (1-a2 )-1 var(cosmXl)/nmmn %,n mn

is of order m/n and cannot be ignored in asymptotic considerations.

Before proceeding, we give the following useful lema.

Lemma 1. Suppose f has square summable Fourier coefficients. Then, as

m
J11 var(cosjXl) - m/2 + o(4r).

If it is further required that the *j's be absolutely summable the term

NO) may be replaced by 0(1).

Proof: Recall that

m m m 2

.1 var(cosjX1 ) - m/2 + (1/2) *.2j - ji tJ-

If the js are absolutely summable, it is clear that the last expression
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is m/2 + 0(1). By the Cauchy-Schwarz inequality,

m . m # 2 ) 1/2

from which the rest of the lemma follows.

4. Densities With Nearly Exponential Fourier Coefficients

In Section 2 it was mentioned that the ARMA estimator should perform

well for densities with geometrically decaying *j's, i.e., ones for which

- cexp(-aj) as J+-. In this section, we shall investigate the more

general case in which f has Fourier coefficients

= e'aJRp(j), j = 1,2,..., (4.1)

where a>O and R is a regularly varying function (defined on [1,-)) with

index p, lpl<-.

An ideal asymptotic comparison of J(fn(,;m,a),f) and J(fn(-;m),f)

would be to investigate Rn = J/J where Jn mm r(a -;ma),f)
inn, when (mn (

and Jn = m1 n J(fn(.;m),f). Instead of this approach, we shall choose a to

depend on at most m, and then study m~n J(fn(e;m,am),f) as n b. The am to

be used is one suggested by generalized jackknife theory. According to

Schucany, Gray, and Owen (1972),

E ((Fm(x)- rFm_1 (x))/(1-r)) _ J et x

if r 0 * eijx/ Y el J x . When (4.1) holds, the last quantity is
j=m+l j=m

asymptotic to (4m+ /sm)e i x as m-. Referring to (2.4), then, a

asympttic"t
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reasonable choice for a.would seem to be *u,+1/%,* Recall that with

= m+l/m , E[Gm,a(x)] is the ei-transform of Fm(x) (see Section 2).

* . Defining B(f,f) to be the integrated squared bias of f, it follows

from Theorem 4 of Hart and Gray (1985) that whenever am = Om+110m e-a(a>O)

lim B(fn (;m,am),f)/B(fn (.;m),f) = 0.

When the j satisfy (4.1) we have the following more precise result.

As a matter of convenience, am is taken to be e-a in the remainder

of this section.

Lemma 2. Let f be a density with Fourier coefficients as in (4.1). Then,

as m-,

8(fn(.;m),f) - (2/%)e'2a(m+l)R 2p(m)(1-e-2a)-l

B(f n(-;m,ea),f)/B(f n(.;m),f) - Am

(1-e'2a) O (R (j+m+I)/R (m)_1)2e'2aj, and
J=O P p

lim = 0.

Proof: Define

m + l 2/(e -2a(m+1)R2 W)

=IO e 2 aj R2 (j+m+1)/R 2(m).
j=Q P

Since R is regularly varying, it follows that R2(m+1)/R2(m)+l as m-*,.
a m- .,
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Hence, for O<<e2a-1, all m sufficiently large and each j>O

e'2 aJR 2(j+m+1)/R2p(m) . e-2aJ(l+c)j+l = (1+)exp[-j(2a-log(1+E))]. Sincep p
the last expression is summable, dominated convergence immediately gives

Sm (1-e 2a)-1, proving the first part of the lemma. The rest of the lemma

is easily obtained by taking a = e-a in B(fn(.;m,a), f) (see (3.1)) and

arguing as we just did.

Under the conditions of Lemma 2, we see that the integrated squared

bias of f n(-;m,e'a) is asymptotically negligible compared to that of

f n(;m). Furthermore, appealing to (3.2), it follows that J(f n(-;m,ea),f)

is asymptotically no larger than J(f n(.;m),f) as n,m.-. The following

theorem gives a more precise result concerning the MISE's of the two

estimators.

Theorem 1. Let R be any regularly varying function (defined on [1,-))

with the representation, for all t sufficiently large,

=pt tPex~ ft E(X)

R (t) = exp(c + B dx),

where p*O, Icl<-, and B>1. If the Fourier coefficients of f are

4j = e-aJR (j) j = 1,2,...,

then

J(fn (;m),f) = (1/%) [m/n+2m2(e2a-1)'] + 0(1/n) + O(m2) (4.2)

and
J(fn(.;m,e-a),f) = (1/%) [m/n+2p2 2 m-2Ca]Jn tm a]

2 m-2) 43
+ 0(1/n) + o(*2 m  (4.3)

''"J% w VV t '' W-" : ..,-.w. ,,-, "~'% ..,,,.,. -.j ,,,.i",.,,., ,.,-,,", ,.,,, .,,,',.,.',,-, -, .,'. ..",, - .,. ,. .•,,. ... -.
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where Ca = e-2a (1+e- 2a )( 1-e2ay3 . Definingm n to be the minimizer
a~ 2 2-2Of J~n(.;m),f) and mn to be the minimizer of rn/n + 2p *rnm C., we also

have

J (e;mn) ,f) a (2axn)- [logn+2ploglogn] + o(loglogn/n).

and

J( (s;mn ,e ),f) = (2axn)i) [logn+2(p-1)loglogn]

+ o(loglogn/n).

Proof: Equation (4.2) is an immiediate consequence of Lemmnas 1 and 2. To

obtain (4.3), note that for all m sufficiently large

R p(J+m+l)/R p(m)-1 =

(1(~)mPx~m+~ c(x)x 1l dx) - 1

(1+(j+l)/m)P - 1 + (1+(J+1)/m)P [exp(f!,+J~l c(x)x 1l dx) - 1]

1m

=pbP?
1 (0+1)m - + (1 +(J+1)/in)P[exp(c. m~j~ c(x)xl dx],J~mj'm fI

where 1 < b.~ C 1 + (j+l)/m and c.~ is a number between 0 and

fm+j+1 c(x)x-1 dx.

We have

fI1+.J+l £(x)x 1 dx <ni' (i+1)sup I (x)l

m I m--~
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and since R is regularly varying, c(x)+O as xb- (see Seneta 1976, p. 3).

Applying Lemma 2, the above results, and dominated convergence gives

B(fn(;m,ea)f) - (2/)e2P2 J1- (j+l) 2e 2aj

Equation (4.3) follows from this and Lemma 1. For the rest of the proof,

note that mn is such that &(n,mn)-O and A(n,mn+l)>O, where

,(n,t) - (1+R (2t)e "2at) - 2(n+l)R 2(t)e"2at .

p p

Since A(n;o) is eventually continuous, it follows that for all n

sufficiently large A(ntn) - 0 for some tn CErtn mn +1). Now A(n,tn) n 0

implies

tn[1-plogt /(at n ) - (c+ f8n E(x)x-1 dx)/(atn)1

-(2a)' log(n+l)[1-log(1/2 + R p(2t n)exp(-2at n)/2)/log (n+l)].

This implies that t n = (2a)
"I logn +o(logn). Substitution of this

expression for tn into the previous equation gives

t n = (2a)- 1[logn +2ploglogn + o(loglogn)],

where we make use of the fact that logL(x)/logx*O for any slowly varying

function L (see Seneta, p. 18). The expansion for J(fn(e;mn),f) follows

upon observing that mn = tn +0(1) and using (4.2). The proof for the ARMA

estimator follows In an analogous manner.

Theorem 1 gives conditions under which an ARMA estimator has, for all

n bigger than some no, smaller MISE than does the best estimator f n(',m)"

The improvement, though, is only in terms of second order efficiency. This
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occurs for two reasons. First, for the #'s considered, the two optimum

MISEs are dominated by their variance terms, and so the smaller bias of the

ARMA estimator is not reflected in the leading HISE term. Secondly. ,j's

of the form (4.1) with p$O are not near enough to being geometric for the

ARMA estimator to be fully effective. The following theorem provides

conditions under which an ARMA estimator yields a first order type of

improvement over f n(;m).

Theorem 2 Suppose the density f has Fourier coefficients

e•aJ L(J) , j 1, 2,..., where

L is a slowly varying function such that, for some 6>0, the quantity

bm(j) - exp(6m)[L(J+m+l)/L(m)-1] satisfies

1im b;(J)e - a  b wit 0 < b <
, jo m0

It then follows that

lira (n(';n ' " ) f *
n-"- lm mn/mn - a/(a+6),

J(fn (.;mn )f)

where mn and mn are as in Theorem 1.

Proof: From (3.1),

B(i (.;me'a),f) (2/%) 2 . e 2a(jm) (L(J)/L(m)-l)2

n m j+

S(2/x) #2 e-2a e-26m O b2(J)C' 2aj
m j O m'



(2/) • 2 (a+6)m L2 (m)be- "a

+ o(2-6)

Using Li I it now follows that

J(fi(.;*gea)f) - (1/) [m/n + 2e-2(&6)m L2(U)b-2.

Proceeding as in the proof of Theorm 1.

J(f n(-;Nne'a,f) - (1/%)(m /n) - logn(2%(6+a)n) " I o(logn/n).

The result follows after similarly analyzing the MISE of n(>;M).

In Hart rid Gray (1985), it was claimed that ARMA estimators are often

more parsimonious than Fourier series estimators. Evidence of this is seen

in Theorem 2. In fact, under the conditions of this theorem, the limits of

J(f (';mn e"a),f)/J(f (-;m ).f) and mn/m are one and the sime, with bothn .n n n n

being less than 1. An example of sJs satisfying the conditions of

Theorem 2 is

a 1/cosh(aJ) , j - 01,....

It is easily verified that the value of 6 for these s's is 2a, and so the

MISE of i (.;mn.e'a) is asymptotically only 1/3 that of f (';m).

Furthermore, this savings is obtained even though the ARMA estimator uses,

In the limit, only 1/3 as many Fourier coefficients as does f n(;m).tnn

Also of interest is comparing AR1A estimators to general Fourier

series estimators of the form

f (x) - (l/) (1+2j7 w (J)$ cosjx) . (4.4)

- .-. .. , , . < -. . .,j. . . . n . -. - . .. . - . . . .. " "- . .



16

Watson (1969) has shown that the minimum MISE among such estimators is

not var(cosJX1 )

Jn.®t " il var(cosjX1) nil

The following theorem shows that under the right conditions an ARMA

estimator is better than any estimator of the form (4.4).

Theorem 3 Suppose that in addition to the conditions of Theorem 2

IL(J)l < A < - for all j.

It then follows that

1rm J(f (-;*.e-).f)/J "/la+6)rn n nopt

where mn and 6 are as in Theorem 2.

Proof: It is sufficient to show that Jn,opt - logn/(2na). To do this,

we proceed as in the proof of a theorem in Section 4 of Watson and

Leadbetter (1963). If the #j's are absolutely summable, It is easy to

show that

S(2/it) $J + 0(1/n).Jn,opt Jul

We have
4 "2 e'2aJ

2aj
I 11 1+2(njl)#I -ill 1+2(n-I)e-'J

(14A2) e-2aj<
J(l l+2(n-l)#1t;l+2(n-l)e-2aJ -

6'
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2 -1 _____

(l+A 2{(n-l) 7 1 + I -2j
J-1 [1+2(n-1)411 iucr,+1

where c. is the greatest integer < log(n-l)/(2a)

w Jc+ e 2aJ < (1-e2a)'1(n-1) 1. Also, since L2 is slowly varying,

we have JL2(j)-- as je- (see Seneta, p. 18). Hence, there exists j such

that for all J ! Jo

[1+2(n-l) -21 < [l+2(n-I)Jl e'2ajc]-I (C > 0)

and tle 2at is monotone decreasing on (0o,-). It follows that for all n

sufficiently large

C n n
cn . 2 - 1 n -1-2

(n-i) ' I i +2(n-1)# I <  (n-l) 'I [ 1 +2(n-1)j ' e 2&JC] '1
Jul ~Jin

+O(n"2)
flog n-I )/2a l-ac-

< (n'-1 /Jo 1l+2(n'l)t 'le -t]'dt +  O(n 2)

< Iog(n-1) fl rl+4aCu 1e-uloq(n-') (n-i) I-1du + O(n- 2)

By dominated convergence, the previous integral tends to 0 as n-. The

proof of the theorem is completed by showing that

n e2ai (4a) as n

logn j-1 l+2(n-l)e&7aJ
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The previous theorem shows that ARM4A estimators are fundmentally

different than Fourier series estimators of the form (4.4). The full

,extent to which this is true will become apparent in the next two sections.

Before proceeding, we also note that a result analogous to Theorem 1

can undoubtedly be obtained for densities satisfying # - cexp(-ajy),

0 < y < 1. For these densities, Hart and Gray (1985) show that if

% " #,+1/%, then B(fn(;mGm),f)/B(;n (-.P)f)-O as m.,-.

5. Densities With Regularly Varying Fourier Coefficients

In a certain sense, the results in Section 4 are not particularly

surprising. The Fourier coefficients of fn(.;me-a) are reasonably well

matched to those of the underlying density, and so one might expect the

ARKA estimator to have much smaller bias than fn(.;m). Of more interest is

to investigate the robustness of ARMA estimators to departures from the

approximate exponential model for the 'jS.

In this section we study the case

j -R_p(J) , j - 1,2,..., (5.1)

where R- is a continuous, regularly varying function of index -p and

P>1/2. Included in such cases are densities with Fourier coefficients

- (1+(J/a)P) " I , j-0,,..., (5.2)

where 1/2 < p < 2. More generally, any set of square summable *.'s that

decay algebraically (see Watson A Leadbetter 1963 and Davis 1977) satisfy

(5.1).

We here present a lenma concerning the integrated squared bias of ARMA

estimators when (5.1) holds.
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Lema 3 Let the s's be as in (5.1), and suppose that m(1-%)-c > 0 as

m". Then

2 .2 f; ((+y)P-.e-cy)d, +

Proof: Since the s are regularly varying l.) ( 2 ) f. (+y) dY

as m.-. Also, % m (1-4.) +1/(2c) - f4 e- 2 ydy.

There exist (see Seneta, pp. 19-20) functions t and 1, defined on (0,-)'

with the properties 4(t) - 4(t) as t4- and 0(t) < + 4(t) for all

t>O. By assumption,

1-(I+E)c/m < am I I - (-C)c/m

for 0 < e < 1 and all m sufficiently large. It follows that

miram
11. sup 1 1  %~ / 5MM

lim fm( mo )'l(t)(1-(1-E)c/m) t'mdt
rn04 m

m+M

Making use of dominated convergence, the last limit is

Sl pe ue(')culdu,

Obtaining a similar lower bound, and using the fact that E may be taken

arbitrarily small, we have

i j m Jm /(m%) f;(1+y) 'Pe'cydy.
n"- - 44 j m
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The lemma now follows upon combining the previous results.

Some remarks are In order here. First, we see that the choice of a.

in Lemma 3 is such that am- 1. This is required since the ijs in (5.1)

decay to zero more slowly than do those in the previous section. It is

straightforward to show that if (5.1) holds and N is bounded away from

1, the limiting integrated squared bias of fn(s;m,.m) is the same as that

of f n(.;m).

Now, since the *j's are regularly varying with index -p < -1/2, it

follows that

2 , ( p -1)1 o r% )1+yo
2-dy. (5.3 )

Hence, the integrated squared biases of f n(.;m) and f n(;m,am) (with a. as

in Lemma 3) are both of order m#2 as mio.. However, by choosing a, such

that m(l-am)+p.

B(fn(.;me*),f)/B(fn(.;m),f) + (2p-1) f; ((I+y)'P-e'PY) 2dy < 1.

Note, though, that with m(1-a m)+p, the contribution of am to the integrated

variance of the ARMA estimator is not insignificant. The smaller bias of

the AR1A estimator does not, then, immediately imply that its MISE is

smaller than that of fn(.;m). This point is investigated in the next

theorem.

Theorem 4 Let the Fourier coefficients of the density f be as in (5.1),

and suppose that m(l-Gm)C > 0 as m'-. Then, defining

IlPc - f;((1+y)'P-e'CY) 2dy,
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(n;ma),f) - -[(m/n)(1+(2c) "I + 2m# 2p1

+ o(m/n + m*2), and

J(f (.;m),f) - X'1(m/n + 2m*(2p-1)"
I

n #;2p1

2+ O(4i-/n) + o(m,)

*

Furthermore, if mn and mn are the minimizers of, respectively,

[(m/n)(1+(2c)'1) + 2(2p'I)Ip PIC and J(fn(-;m),f), then

J(n •mnq m *),f)/J(fn (•mn) ,f) -

(mn/mn)(l+(2c) 1 ) [ [(2p-1)IC]I/(2p)(1+(2c)'l)1
'I/(2p)

as n-1

Proof: The two MISE expressions follow from (3.1) upon applying the

condition m(1-a,)+c, Lemmas 1 and 3, and expression (5.3). Now, using

(5.3) and the first part of Theorem 4,

J(fn(.;mm),f) - 'Z[(m/n)(1+(2c)- ) + (2p-1) Ipt23.

If mn is the minimizer of this last expression, then the continuity of R-p

implies that R2p(tn) A'In " for some tn  m,mn+l], where

A - 2(2p-1)I pC(1+(2c) 1 )-1. By 50, p. 21 of Seneta, there exists a

regularly varying function r of index 1/(2p) such that

r(1/R 2 M(t)) - t as t--.

E-
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*

Since tn-, t n, and hence mn , are asymptotic to r(An). we now have

J(f (-;m* a *),f) - K'l(1+(2c)-l)2p(2p-l)-lr(An)/n.

n n mn

In a similar way, it can be shown that

J(f n(;mn),f) - '12p(2p-1)'1 r(2n)/n.

The rest of Theorem 4 now follows upon using the facts mn - r(An),

mn - r(2n), and r is regularly varying of index 1/(2p).

To determine the amount of improvement (if any) that is possible with

an ARMA estimator, it would be desirable to choose c to minimize the

limiting ratio of MISEs in Theorem 4. This minimization problem appears to

be intractable analytically, although one could certainly determine the

best c numerically for any given p. In the following theorem it is shown

that the choice c = p is such that the limiting ratio in Theorem 4 is less

than 1 for each p > 1/2. Hence, under the conditions of Theorem 4, it is

always possible to obtain asymptotically smaller MISE with an ARMA

estimator than with fn(.;m).

Theorem 5 Let the conditions of Theorem 4 hold with c = p. Then, for each

p > 1/2,

lim J(f (•;mn,_ *),f)/J(f (-;m ),f)
n-ow n n mn n n

Bp = [(2p-1)I ]1/( 2 P)( 1+(2 p)-1)1"1/(2P) < 1.

Proof: Using the fact that (1+y) "P e-Py > e"2py for y>O, it is easy to

show that (2p-1)I < 1/(2p). Hence, B < (2p)' /( 2 )( 1+(2 p)1) 1-1/( 2P)
pp P
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which is less than or equal to 1 iff 2plog(2p) - (2p-1)log(2p+l) > 0.

Defining

g(x) = xlogx - (x-1) log(x+1) for x > 1,

it is now sufficient (since g(1) = 0) to show that g'(x) > 0 for x > 1. We

have g'(x) = 2/(x+l)-log(l+x "1) with g'(1) = 1 - log2 > 0. Since g'x) + 0

as x + -, the result will follow if g' is monotone decreasing on (1,-). -We

have g"(x) = -2(x+1)-2 +x-1 - (x+15 " , which is less than 0 on (1,-), and

the proof is complete.

Recalling the el-transform motivation for ARMA estimators, it is of

interest to determine if am = *m+1/*m satisfies m(1-am)+p when (5.1) holds.

As shown by Seneta, pp. 2-7, R is regularly varying with index -p if andWi -p

only if it satisfies, for all t sufficiently large,

R_ (t) = t-Pexp((t) + ftc(x)x "ldx), (5.4)

where Ti is a bounded, measurable function on [B,-) such that r(t)+co as

t+- ()Col<-), and e is a continuous function on [B,-) such that c(t)S as

t-.-. Now, if the function r in (5.4) is replaced by a constant, it is easy

to show that m(1-R p(m+1)/R_ p(m))+p as mi-. Therefore, Theorem 5 implies

that under a slightly stronger condition on the j's than imposed by (5.1),

the MISE of an ARMA estimator with am = m+il/m is asymptotically smaller

than that of fn(.;m). Since (5.4) does not decay geometrically, the last

result gives a good indication of the versatility of the el-transform based

ARMA estimator.

We close this section with a corollary that extends the results of

Sections 4 and 5.
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Corollary 1 Suppose the *j's in Theorems 1-5 are replaced by (-l)J j for

j = 1,2,..., and the respective values for a are replaced by -a. Then the

results of the five theorems are unchanged.

Proof: Considering expression (3.1), it is clear that J(fn (;m,a),f)

J(f n(.;m.-a),f*), where f and f* have Fourier coefficients, respectively,

*. and (-1)j *., j = 1,2,....

6. Densities That Are Smooth at One Endpoint but Not the Other

In this section it is shown that the results of Section 5 are

applicable under simple qualitative conditions concerning the smoothness of

f. When these conditions hold, it is found that a result like that in

Theorem 5 remains valid even when fn(.;m) is replaced by the very best

estimator of the form (4.4). To obtain this somewhat surprising result, we

first state the following lemma. The proof is analogous to that of the

first theorem in Section 3 of Watson and Leadbetter (1963), and is thus

omitted.

Lemma 4 Suppose that for some p > 1/2 jPi$jIK1/2>O as j-. Then

dn,opt nl/(2p)-1 (2K)'/(2P)f- (l+t2 P)'Idt,

.where Jn,opt is defined by (4.5).

The following theorem will allow us to obtain the most interesting

results of this paper.

Theorem 6 Suppose that f has 2k derivatives (k>l) on [O,%] with f(2k)

square integrable. (The quantities f(r)(o) and f(r)(n) are defined to be

f(r)(O+) and f(r)(n-), respectively.) If f(r)(o) = f(r)(,) = 0 for
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r = 1, 3,...,2k-3, f(2k-1)(.n) = 0 and f(2k-1)(0) * 0, then (with

m(l-cam)4 2k)

M. J( f n(.;m* ,am*),f)/J( f n(-;m n),f)

[(4k-1)I 2k2]1/(4k)(1+(4k)- )l1-1/(4k) < 1, and (6.2)

k4! J ( (;Mn am* )'f)/Jnopt-

Ck[2 /4k) :/(4ksin(,/(4k)))1 41 < 1 ,(6.3)

where

Ck = [(4k+l)/(4k-1)] 1(k(8kI2k,2k)l(k

If f(r)(Q) = f(r)(1,) = 0 for r = 1, 3,...,2k-3, f(2k-1)(Q) =0, f( 2k-i)(n

* 0, and m(l+a )-*2k, then the result of the theorem is the same except that

f(2k-1)(Q) is replaced by f2-),)

Proof: Using integration by parts we have

(I = -2k [f(2k1) (0) + *j,20 , where

t,2 fn f(2k)(u)cosjudu.

Since f(2k) is square integrable, tj,2k"0O as j-o.. It follows that the

isare regularly varying with index -2k and that j2kioj,i~.f(2k-1)(o) I as
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Jam . Results (6.1) and (6.2) now follow upon applying Theorems 4 and 5,

respectively. The limit in (6.3) is a consequence of Theorem 4, Lemma 4,

and the fact that

fO(1+t 4k )ldt = %[4ksin(%/(4k))]
" •

It is argued in the Appendix that the limit in (6.3) is less than 1. The

case where f(2k'l)(o) = 0 and f(2k-1)(K) * 0 follows from Corollary 1.

The special case k = 1 in Theorem 6 is worth discussing. In this

case, we have either f'(0) * 0, f'(%) = 0 or f'(0) = 0, f'(it) * 0. In

either situation, the density tends smoothly to its limit at one endpoint

but not at the other; exponential-like densities are one example of such

behavior. The poor performance of the Fourier series estimator fn(O;m)

when f'(0) * 0 has been noted by Buckland (1985) in the setting of line

transect sampling. Theorem 6 shows that in such cases the MISE of an ARMA

estimator is (for large enough n) smaller than that of the very best

Fourier series estimator of the form (4.4) (which, of course, includes

fn (;m) as a special case).

Table 1 shows how much of an improvement in MISE is obtained with the

ARMA estimator in certain cases where the *j's decay algebraically. The

cases p = 2, 4, 10, 20 correspond to k = 1, 2, 5, 10 in Theorem 6. Note

that when p = 2 (the situation discussed in the previous paragraph) the

asymptotic MISE of the ARMA estimator is only about 64% and 77% of that

for, respectively, fn(.;m) and the optimum Fourier series estimator. It

is also interesting that the ARMA estimator uses, in the limit, only 51% as

many Fourier coefficients as does f n(.:m).many

,,,q , , ,,, ,. ,, .L, . • -, ,,j , w,-, ,,--, , , - ,-% ,,,,. ,, .-, ,-, ,. .,,,., ' ' .. - ',. . '',"-'-'.",. -", .,',,". .'.
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7. Choice of Smoothing Parameter by Cross-Validation

In the practice of density estimation, one must usually select

smoothing parameters via some data-driven method. As a result, data-based

density estimators are not as efficient (at least in small samples) as

theory would suggest. Hence, it is not realistic to expect that the MISE

improvement discussed in previous sections is fully attainable in practice,

except perhaps in very large samples. However, some improvement in small

samples seems likely if the ARMA estimator's smoothing parameter is

reasonably chosen. This is borne out in the simulation study of this

section.

One means of choosing the smoothing parameter, (m,a), of the ARMA

estimator is the cross-validatory method introduced by Rudemo (1982) and

Bowman (1984). In our setting, this method chooses the pair (A,) that

minimizes

R(m,a) = fO f n(x;m,a)dx - (2/n) =il fn,i(Xi;mla) (7.1)

where f ni indicates the estimator calculated by deleting the data value

Xi. Rudemo (1982) showed that R(m,a) is an unbiased estimator of the risk

R(m,a) = J(fn(.;m,a),f) - fmf2(x)dx.

A number of results now exist showing that density estimates chosen by

cross-validation are asymptotically efficient; see, for example, Hall

(1983, 1985), Stone (1984), and Hall and Marron (1985).

a .. a . . . . . . **- . J~*. . .
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To investigate the behavior of cross-validated ARMA estimates, a small

simulation study was conducted. The density considered was

f(x) = 2e'2x(l+e'4(i x))(1-e 4n) "l, 0 < x < 1, (7.2)

which has algebraic Fourier coefficients

W (1+(j/2)2 ) , j - 1,2,...

This density is of interest since it has f'(0) - -2(1-e "4 ) and f'(w) - 0,

and thus satisfies the conditions of Theorem 6.

For (7.2) and n - 50, the minimum RISE among ARMA estimators is

.00633. This minimum occurs at (m,a) • (1, .64). Among Fourier series

estimators f n(.;m), the optimum m and NISE are 5 and .04160. Since

.00633/.0416 = .152, we see that the asymptotic relative efficiency of .64

from Table 1 understates the improved efficiency of the optimum ARMA

estimator at n = 50.

Twenty independent random samples of size n - 50 were generated from

the density (7.2). This was done by generating values from the exponential

density g(x) 2e 2x I(0,.)(x), and using the fact that, if Y has density

g, then

X YI(on)(Y)

+ (Y-2J)[I (Y)

has density (7.2). Since little of the mass of g is larger than n, the

graphs of f and g on (0,%) are virtually indistinguishable.

, ~' %V.',
z e "
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For each of the twenty data sets, the minimizer of R (defined by

(7.1)) for 0 < a < 1, 1 < m < 20 was approximated. Also, the minimizer of

R(m,0) for 1 < m < 20 was determined. This latter value of m is simply a

cross-validatory choice of the smoothing parameter of fn (';m) (see Hart

1985 and Diggle and Hall 1986 for more on this subject). The integrated

squared errors of the cross-validated ARMA and Fourier series estimates

were determined for each data set. Denote these two ISEs IA and IFP

respect i vely.

The results of the simulation are summarized In Table 2. The fact

that average IA was a bit larger than average IF is misleading. In 16 of

the 20 cases, the ratio IA/IF was between .151 and .690. Note the trimmed

mean and the confidence interval for the median of IA/OF in Table 2. These

more accurately reflect the overall performance of the two cross-validated

density estimates. From the 16 cases in which IA was less than IF, a

typical comparison of the two estimates is given in Figure 1. The

qualitative improvements obtained with the ARMA estimate are a better

estimate of f(O) and an absence of spurious bumps. See Hart and Gray

(1985) for further discussion of the qualitative properties of ARMA

approximators.

It is also important to point out what happened in the four cases

where IA > IF* Figure 2 is a plot of the 20 values of (m,a) chosen by

cross-validation. In the cases where IA IF cross-validation chose

too large an a and/or too large an m. When a is too near 1, the ARMA

estimate tends to be too large near 0, thus inflating the estimate's

integrated squared error. That cross-validation would
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occasionally choose too rough an ARMA estimate is not unexpected. It is

well known from other settings that in small samples cross-validation tends

to drastically undersmoth around 5-20% of the time (see, e.g., Hart 198S).

Clearly, further experimentation is needed to determine how

efficiently cross-validation smooths ARWA estimates. Some very recent work

of Scott and Terrell (1986) shows that a biased version of cross-validation

provides more efficient kernel estimators in moderate and large samples.

Such an idea is also worth pursuing in the setting of ARMA estimators. For

example, a modification of i(m,m) that places a more severe penalty on

large values of )la would discourage the occasional undersmoothing observed

in the simulation study.

8. Concluding Remarks

We have shown that under a variety of conditions, a density estimator

having the rational form of an ARMA spectrum can yield an improvement in

MISE over the very best Fourier series estimator of the form (4.4).

Furthermore, if its smoothing parameter is chosen properly, the ARMA

estimator never has larger MISE than that of the simple Fourier series

estimator fn (-;m). Although further work is needed on the data-based

smoothing of ARMA estimates, the results of Section 7 are fairly

encouraging with regard to cross-validated smoothing.

The ideas of this paper could also be applied to other density

estimators of the type

fm(x) - (it) [1+2 W * cosix)J ja
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The form (2.4) immediately suggests 'Jackknifed" versions of o. o

as the truncation bias of fi is not dominated by the bias due to the

w 's, results analogous to. for example, Theorem 5 could be established

for a jackknifed f

Finally, our results could also be extended somewhat by considering

estimators based on a sine-cosine basis and allowing a to be

complex-valued. In fact, the results of Hart and Gray (1985) apply to the

bias of such estimators.

K#C.i
r ', "•"_ .', , ." "" -" . ',"o ,". "- ,;," " "- . -. ," ". € ', .,- .""' , - b".. ¢" . ,' '. "".' ."""
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Appendix

Proof of (6.3): As stated in the proof of Theorem 6, we need only

show that the limit in (6.3) is less than 1. For k - 1 or 2, the

inequality follows from Table 1. For k - 3.4,..., it is sufficient to show

that C k2-11(4k) < 1, since 0 < x-1sinx <'1 for 0 < x < *112. Now,

<4k(4k-1)-1 (1+(4k)1)1-/k~1/(4k) ,a

in the proof of Theorem 5. The last quantity is less than or equal to I

for k - 3, 4,... if

g(x) - xlog(x-1) - (X-1) log(x+1) > 0

for x >I1. The rest of the proof proceeds exactly as in the proof of

Theorem S. (Note that g(12) > 0.)

Calculation of numbers in Table 1: The requisite quantities can all

be calculated analytically except for

(20-1)1 po 2 - (2p)'i - 2(2p-l)ePE P( p)

where E k(y) - fT e-t k tis the so called exponential integral. The

table values were obtained by using the approximation of either E P(p) or

ePE P(p) given in Abramowitz and Stegun (1972).
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Table 1. Asymptotic MISE of ARMA and Fourier Series Estimators for

Densities With Algebraically Decaying Fourier Coefficients

(It is assumed that jPIcjI.K 1 / 2 as

Type of Estimator

Fourier Series
Optimum with 0-1

p ARMA Fourier Series Weights

1 1.3579 1.5708 2

2 .8534 1.1107 4/3

3 .7968 1.0472 6/5

4 .7890 1.0262 8/7

10 .8335 1.0041 20/19

20 .8826 1.0010 40/39

Notes: For a given p and estimator, a table value is the limit of

nl-1/(2P)B MISE, where B = -(2K) "I / (2 p) . Details of how
P p

the values were obtained are given in the Appendix. For a given p,

the limiting ratio of ARMA truncation point (m*) to Fouriern

series truncation point (inn) is (1+(2p) 1 )-1 Ap/FS p, where A and

FS are the table values in, respectively, the first and third

columns above.
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Table 2. Summary of Simulation Study

Type of Estimate

ARMA Fourier Series

Average ISE .0542 .0522

Median ISE .0183 .0354

Trimmed mean ISE .0287 .0390

Notes: The trimmed means exclude the three (out of 20) largest values of

ISE. A 95% confidence interval for the median of IA/IF is

(.3607, .6581), where IA and IF are, respectively, the ISEs of

cross-validated ARMA and Fourier series estimates.
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Captions for Figures

Figure 1. Wrapped Exponential Density, ARMA Estimate, and Fourier

Series Estimate. The solid curve is the density (7.2). The ARMA estimate

has the higher value at 0 and no spurious bumps. The two estimates were

calculated from the same set of data, each being fitted by cross-

validation.

Figure 2. Distribution of Smoothing Parameters in Simulation Study.

The smoothing parameters were chosen by crass-validation. The four largest

values of m correspond to the only cases where the ISE of the ARMA estimate

was larger than that of the Fourier series estimate. The MISE optimum

value of (m,a) is (1,.64).
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